Home
Class 11
MATHS
If frac{5(-8+6i)}{(1+I)^2} = a+ib, then ...

If `frac{5(-8+6i)}{(1+I)^2} = a+ib`, then (a,b) equals

A

(15,20)

B

(20,15)

C

(-15,20)

D

(-15,-20)

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If (frac{1-i}{1+i})^100 = a+ib, then find (a,b)

If [frac{1-i}{1+i}]^96= a+ib , then (a,b) is

If frac{a+3i}{2+ib} = 1-i, show that (5a-7b)=0

If Z= frac{(sqrt3+i)^3(3i+4)^2}{(8+6i)^2} , then abs(Z) is equal to

If (sqrt8+i)^50 = 3^49(a+ib) , then a^2+b^2 is

If a= frac{-1+sqrt3 i}{2} , b= frac{-1-sqrt3 i}{2} , then show that a^2 =b and b^2 =a

(frac{1+i}{1-i})^2 =?

If a and b are real numbers and (a+ib)^11 = 1+3i then (b+ia)^11 is equal to

If frac{(1+i)^3}{(1-i)^3}-frac{(1-i)^3}{(1+i)^3} = x+iy , then