Home
Class 11
MATHS
If (x+yi)^frac{1}{3} = u+vi, where u,v,x...

If `(x+yi)^frac{1}{3} = u+vi`, where u,v,x,y in R,then

A

`frac{x}{u} + frac{y}{u} = 4(u^2-v^2)`

B

`frac{x}{u} - frac{y}{v} = 4(u^2-v^2)`

C

`frac{x}{u}+frac{y}{v} = 4(u^2+v^2)`

D

`frac{x}{u} - frac{y}{v} = 4(u^2+v^2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+frac{1}{x}= sqrt3 , then x=

Show that dy/dx = frac{y}{x} in the following, where a and p are constants.: x^7 y^5 = (x+y)^12

Show that dy/dx = frac{y}{x} in the following, where a and p are constants.: x^p y^4 = (x+y)^(p+4) , p in N

Show that dy/dx = 'frac{y}{x} in the following, where a and p are constants.: tan(-1) frac{3 x^2 - 4 y^2 }{3 x^2 + 4 y^2 } = a^2

If [frac{3}{2}+i frac{sqrt3}{2}]^50 = 3^25(x-iy) ,where x,y are real and i=sqrt(-1) , then the order pair (x,y) is given by

Show that dy/dx = 'frac{y}{x} in the following, where a and p are constants.: sin ( frac{ x^3 - y^3 }{ x^3 + y^3 } ) = a^3

If z=x-iy and z^frac{1}{3}= a+ib , then frac{frac{x}{a}+frac{y}{b}}{a^2+b^2}=

If (frac{1+i}{1-i}^3) - (frac{1-i}{1+i}^3) = x+iy, then find (x,y)

Show that dy/dx = 'frac{y}{x} in the following, where a and p are constants.: sec frac{ x^5 + y^5 }{ x^5 - y^5 } = a^2

Show that the function f(x) = frac {4x^3 +1 }{x} is a decreasing function in the interval (frac{1}{4}, frac{1}{2})