Home
Class 11
MATHS
If n is any positive integer, then the v...

If n is any positive integer, then the value of `frac{i^(4n+1)-i^(4n-1)}{2} equals

A

1

B

`-1`

C

i

D

`-i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n, find the value of (1-i)^n (1-1/i)^n

If n is an odd positive integer then the value of (1+ i^(2n) + i^(4n) + i^(6n) ) ?

Select the correct answer from the given alternatives. If n is an odd positive integer then the value of 1 + (i)^(2n) + (i)^(4n) + (i)^(6n) is …….. .

If n is a positive integer then (frac{1+i}{1-i})^(4n+1) =

The expression frac{(1+i)^n}{(1-i)^(n-2)} equals

The value of (-i)^frac{1}{3} is

If m, n, p, q are four consecutive integers, then the value of ( i^m + i^n + i^p + i^q ) is

If n is an odd integer, i= sqrt -1 then [ (1 + i)^(6n) + (1 - i)^(6n) ] is equal to

If n is a positive integer not a multiple of 3, then 1+(omega)^n+(omega)^(2n) =