Home
Class 11
MATHS
If (a+ib)(c+id)(e+if)(g+ih) = A+iB, then...

If `(a+ib)(c+id)(e+if)(g+ih) = A+iB`, then `(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) = `

A

A)`A^2+B^2`

B

B)`A^2-B^2`

C

C)`A^2`

D

D)`B^2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+ib)(c+id)(e+if)(g+ih) = A+ iB, then show that ( a^2 + b^2 ) ( c^2 + d^2 )( e^2 + f^2 )( g^2 + h^2 )= ( A^2 + B^2 )

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

Fina a and b if (a + ib) (1 + i) = 2 + i

if (x + iy)^(1 / 3) = a + ib , show that (x / a) + (y / b) = 4(a^2 - b^2) .

If x +iy = (a + ib) / (a - ib) , prove that x^2 + y^2 = 1 .

If (sqrt8+i)^50 = 3^49(a+ib) , then a^2+b^2 is

If a,b,c,d are in proportion, then prove that (a^2+ab+b^2)/(a^2-ab+b^2)=(c^2+cd+d^2)/(c^2-cd+d^2)

If a+ib= frac{1+i}{1-i} , then prove that ( a^2 + b^2 )=1

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If (a+ib) = frac{(x+i)^2}{2x^2+1} , prove that a^2 + b^2 = frac{(x^2+1)^2}{(2x^2+1)^2}