Home
Class 11
MATHS
abs[(1+i)frac{2+i}{3+i}]=...

`abs[(1+i)frac{2+i}{3+i}]`=

A

`-frac{1}{2}`

B

`frac{1}{2}`

C

1

D

`-1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the modulus and argument of the complex numbers frac{1+2i}{1-3i}

Find the modulus and argument of the complex numbers frac{1+2i}{1-3i}

The value of x, y which satisfy the equation frac{(1+i)x - 2i}{3+i} + frac{(2-3i)y +i}{3-i} = i are

(frac{1+i}{1-i})^2 =?

The complex number z satisfying the equation abs(frac{z-12}{z-8i})=frac{5}{3}, abs(frac{z-4}{z-8}) = 1

i^65+frac{1}{i^145} =

The value of (-i)^frac{1}{3} is

Show that frac{1-2i}{3-4i} + frac{1+2i}{3+4i} is a real

Find the value of x and y which satisfy the following equation (x, y in R): frac{x+iy}{2+3i} + frac{2+i}{2-3i} = frac{9}{13} (1+i)

Express the following in the form of (a+ib), a,b in R, i= sqrt (-1) State the values of a and b: frac{3+2i}{2-5i} + frac{2-2i}{2+5i}