Home
Class 11
MATHS
If frac{2z1}{3z2} is a purely imaginary...

If ` frac{2z_1}{3z_2}` is a purely imaginary number, then `abs(frac{z_1-z_2}{z_1+z_2}) = `

A

`frac{3}{2}`

B

1

C

`frac{2}{3}`

D

`frac{4}{9}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If frac{z-i}{z+i}(z ne -i) is a purely imaginary number, then z.barz is equal to

If ( frac{z-1}{z+1} ) is a purely imaginary number (z != -1), then find the value of abs(z)

Let z1 be a complex number with abs(z_1)=1 and z2 be any complex number, then abs(frac{z_1-z_2}{1-z_1barz_2}) =

Show that z= frac{5}{(1-i)(2-i)(3-i)} is purely imaginary number

z_1 =2-i, z_2 =1+i, find abs(frac{z_1+z_2+1}{z_1-z_2+1})

If z=x+iy then abs(frac{z-1}{z+1}) =1 represents

If z_1 and z_2 are any complex numbers, then abs(z_1+z_2)^2+abs(z_1-z_2)^2 is equal to

If z is a complex number such that frac{z-1}{z+1} is purely imaginary, then

If z_1 = 1-i and z_2 = 2+4i , then im[frac{z_1z_2}{z_1} =

If z_1 , z_2 and z_3 , z_4 are two pairs of conjugate complex numbers, then find arg( frac{z_1}{z_4} ) + arg( frac{z_2}{z_3} )