Home
Class 11
MATHS
If abs(z)= 1 and omega = frac{z-1}{z+1} ...

If `abs(z)= 1` and `omega = frac{z-1}{z+1}` (where ` z !=``-1`), the `Re(omega)` is

A

A)0

B

B)`frac{1}{abs(z+1)^2`

C

C)`abs(frac{z}{z+1}.frac{1}{abs(z+1)^2`

D

D)`frac{sqrt2}{abs(z+1)^2}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If abs(z) =5 and w = frac{z-5}{z+5} , then Re(w) is equal to

If z= x+iy and omega = frac{1-iz}{z-i} , the abs(omega) = 1 shows that in complex plane.

If abs(z_1) =1, ( z_1 != -1) and z_2 = frac{z_1 - 1}{z_1 +1} , then show that the real part of z_2 is zero.

If z_1 = 1-i and z_2 = 2+4i , then im[frac{z_1z_2}{z_1} =

If z=x+iy then abs(frac{z-1}{z+1}) =1 represents

If z=(-1-i) , then arg z =

If omega_n = cos(frac{2pi}{n})+sin(frac{2pi}{n}) , i^2 = -1 , then (x+y(omega_3)+z(omega_3)^2)(x+y(omega_3)^2+z(omega_3)) is equal to

If ( frac{z-1}{z+1} ) is a purely imaginary number (z != -1), then find the value of abs(z)

If z is a complex number such that frac{z-1}{z+1} is purely imaginary, then

If abs(z+1) = z+2 (1+i), then find z