Home
Class 11
MATHS
The amplitude of sin(frac{pi}{5}) + i(1-...

The amplitude of `sin(frac{pi}{5}) + i(1-cos(frac{pi}{5} ` is

A

`frac{pi}{5}`

B

`frac{2pi}{5}`

C

`frac{pi}{10}`

D

`frac{pi}{15}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Amplitude of frac{1+i}{1-i} is

The value of cos frac{pi} {5} cos frac{2pi} {5} cos frac{4pi} {5} cos frac{8pi} {5} = ............... A) (1)/(16) B) 0 C) (-1)/(8) D) (1)/(8)

If z = cos(frac{pi}{6})+isin(frac{pi}{6}) , then

Find the value of sin^-1(sin(frac{3pi}{5}))

Select the correct option from the given alternatives: The principal value of sin^-1(frac{-sqrt3}{2}) is A) -frac{2pi}{3} B) frac{4pi}{3} C) frac{5pi}{3} D) -frac{pi}{3}

Find dy/dx if, x= t^2 + t +1 , y= sin(frac{pi t}{2}) + cos (frac{pi t}{2}) at t = 1

The value of [frac{1-cos(frac{Pi}{10})+isin(frac{Pi}{10})}{1-cos(frac{Pi}{10})-isin(frac{Pi}{10})]]^10 =

Prove the following: sin^-1(frac{3}{5})+cos^-1(frac{12}{13}) = sin^-1(frac{56}{65})

If z_1 = sqrt2(cos(frac{pi}{4})+isin(frac{pi}{4})) and z_2 = sqrt3(cos(frac{pi}{3}+isin(frac{pi}{3})) , then abs(z_1z_2) is

[frac{1+cos(frac{pi}{12})+isin(frac{pi}{12})}{1+cos(frac{pi}{12})-isin(frac{pi}{12})}]^72 is equal to