Home
Class 11
MATHS
If (1+isqrt3)^9 = a+ib, then value of b ...

If `(1+isqrt3)^9 = a+ib`, then value of `b` is equal to

A

1

B

256

C

0

D

2^9

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sqrt8+i)^50 = 3^49(a+ib) , then a^2+b^2 is

If z=(1+isqrt3)^100 , then frac{Re(z)}{Im(z)} equals

If sqrt(a+ib) = x+iy , then possible value of sqrt((a-ib) is (a,b,x,y in R)

Express the following in the form of a + ib, where a, b in R , i = sqrt-1 . State the value of a and b. (-sqrt(5) + 2sqrt(-4)) + (1 - (sqrt-9)) + (2 + 3i) (2 - 3i)

Express the following in the form of (a+ib), a,b in R, i= sqrt (-1) State the values of a and b: ( sqrt 5 +2 sqrt (-4) )+(1- sqrt (-9) )+(2+3i)(2-3i)

Express the following in the form of a + ib, where a, b in R , i = sqrt-1 . State the value of a and b. (4i^8 - 3i^9 + 3) / (3i^11 - 4i^10 - 2)