Home
Class 11
MATHS
If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac...

If `z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5`, then

A

`Re(z)=0`

B

`Im(z)=0`

C

`Re(z) gt 0,Im(z) gt 0`

D

`Re(z) gt 0, Im(z) lt 0`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to

If z= frac{sqrt3+i}{2} , then z^69

If i=sqrt(-1) , then 4+5[frac{-1}{2}+frac{isqrt(3)}{2}]^334+3[frac{-1}{2}+frac{isqrt(3)}{2}]^365 =

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =

Select the correct option from the given alternatives: cos[tan^-1(frac{1}{3})+tan^-1(frac{1}{2})] = A) frac{1}{sqrt2} B) frac{sqrt3}{2} C) frac{1}{2} D) frac{pi}{4}

If i = sqrt(-1) , then 4+5(-frac{1}{2}+frac{isqrt3}{2})^334+3(-frac{1}{2}+frac{isqrt3}{2})^365 is equal to

Simplify: [ frac{1}{1-2i} + frac{3}{1+i} ] [ frac{3+i}{2-4i} ]

Show that cos^-1(frac{sqrt3}{2}) + 2sin^-1(frac{sqrt3}{2}) = frac{5pi}[6}

[frac{1+i}{sqrt2}]^8+[frac{1-i}{sqrt2}]^8

If a= frac{-1+sqrt3 i}{2} , b= frac{-1-sqrt3 i}{2} , then show that a^2 =b and b^2 =a