Home
Class 11
MATHS
The value of frac{1}{1+omega}+frac{1}{1+...

The value of `frac{1}{1+omega}+frac{1}{1+(omega)^2} = `

A

A.0

B

B.1

C

C.-1

D

D.2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( frac{1}{omega} + frac{1}{omega^2} ),where omega is the complex cube root of unity.

The value of (frac{1+omega}{(omega)^2}}^3 is

If omega is of complex cube root of unity, then the value of [ frac{a+ b omega + c omega^2}{c+ a omega + b omega^2} + frac{a+ b omega + c omega^2}{b+ c omega + a omega^2} ] is

If omega is the complex cube of unity, find the value of omega + frac{1}{omega}

If 1, omega , (omega)^2 are the cube roots of unity, then frac{1}{1+2(omega)}+frac{1}{2+omega}-frac{1}{1+omega} =

If omega is the complex cube of unity, find the value of (1+ omega )(1+ omega^2 ) (1+ omega^4 )(1+ omega^8 )

If omega is a complex cube root of unity, then find the values of: (1 + omega) (1 + omega^2) (1 + omega^4) (1 + omega^8)

If the curvs a x^2 + b y^2 = 1 and a' x^2 + b' y^2 =1 intersect orthogonally, then prove that frac{1}{a} - frac{1}{b} = frac{1}{a'} - frac{1}{b'}

If z^2+z+1= 0 where z is a complex number, then the value of (z+frac{1}{z})^2+(z^2+frac{1}{z^2})^2+(z^3+frac{1}{z^3})^2+…....+(z^6+frac{1}{z^6})^2 is

If z= x+iy and omega = frac{1-iz}{z-i} , the abs(omega) = 1 shows that in complex plane.