Home
Class 11
MATHS
Value of [frac{-1+sqrt(-3)}{2}]^40 +[fra...

Value of `[frac{-1+sqrt(-3)}{2}]^40 +[frac{-1-sqrt(-3)}{2}]^40` is

A

0

B

1

C

-2

D

`-1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to

[frac{1+i}{sqrt2}]^8+[frac{1-i}{sqrt2}]^8

If i=sqrt(-1) , then 4+5[frac{-1}{2}+frac{isqrt(3)}{2}]^334+3[frac{-1}{2}+frac{isqrt(3)}{2}]^365 =

The value of (frac{1+sqrt3i}{1-sqrt3i})^64+(frac{1-sqrt3i}{1+sqrt3i})^64 is equal to

If a= frac{-1+sqrt3 i}{2} , b= frac{-1-sqrt3 i}{2} , then show that a^2 =b and b^2 =a

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =

If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5 , then

Show that (frac{1+i}{sqrt 2})^8 + (frac{1-i}{sqrt 2})^8 = 2

Which of the following is a fourth root of frac{1}{2}+i frac{sqrt3}{2} ?

Show that cos^-1(frac{sqrt3}{2}) + 2sin^-1(frac{sqrt3}{2}) = frac{5pi}[6}