Home
Class 11
MATHS
If i=sqrt(-1), then 4+5[frac{-1}{2}+frac...

If `i=sqrt(-1)`, then `4+5[frac{-1}{2}+frac{isqrt(3)}{2}]^334+3[frac{-1}{2}+frac{isqrt(3)}{2}]^365 = `

A

`A.(1-isqrt3)`

B

`B.(-1+isqrt3)`

C

`C.isqrt3`

D

`D.-isqrt3`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If i = sqrt(-1) , then 4+5(-frac{1}{2}+frac{isqrt3}{2})^334+3(-frac{1}{2}+frac{isqrt3}{2})^365 is equal to

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =

Value of [frac{-1+sqrt(-3)}{2}]^40 +[frac{-1-sqrt(-3)}{2}]^40 is

If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5 , then

[frac{1+i}{sqrt2}]^8+[frac{1-i}{sqrt2}]^8

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to

Show that (frac{1}{sqrt 2}+frac{1}{sqrt 2}i )^10 + (frac{1}{sqrt 2}-frac{1}{sqrt 2}i )^10 = 0

Show that tan^-1(frac{1}{2}) = frac{1}{3}tan^-1(frac{11}{2})

Simplify: [ frac{1}{1-2i} + frac{3}{1+i} ] [ frac{3+i}{2-4i} ]

Show that 2cot^-1(frac{3}{2})+sec^-1(frac{13}{12}) = frac{pi}{2}