Home
Class 11
MATHS
The value of [frac{1+isqrt3}{1-isqrt3}]^...

The value of `[frac{1+isqrt3}{1-isqrt3}]^6 + [frac{1-isqrt3}{1+isqrt3}]^6` is

A

2

B

`-2`

C

1

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (frac{1+sqrt3i}{1-sqrt3i})^64+(frac{1-sqrt3i}{1+sqrt3i})^64 is equal to

The value of 8^frac{1}{3} is

The amplitude of frac{1+sqrt3i}{sqrt3+i} is

The value of (-i)^frac{1}{3} is

Value of [frac{-1+sqrt(-3)}{2}]^40 +[frac{-1-sqrt(-3)}{2}]^40 is

If [frac{1+isqrt3}{1-isqrt3}]^n is a integer, then n is

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to

If z = frac{1-isqrt3}{1+isqrt3} , then arg(z) =

frac{(-1+isqrt3)^15}{(1-i)^20}+frac{(-1-isqrt3)^15}{(1+i)^20} is equal to

Find the value of: ((1 + isqrt(3)) / (1 - isqrt(3)))^6 + ((1 - isqrt(3)) / (1 + isqrt(3)))^6 using De Moivre's Theorem