Home
Class 11
MATHS
The congugate of frac{(2+i)^2}{3+i} in t...

The congugate of `frac{(2+i)^2}{3+i}` in the form `a+ib` is

A

`frac{13}{2}+ifrac{15}{2}`

B

`frac{13}{10}+ifrac{-15}{2}`

C

`frac{13}{10}+ifrac{-9}{10}

D

`frac{13]{10]+ifrac{9}{10}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If the congugate of (x+iy)(1-2i) be 1+i, then

The congugate of a complex number frac{2+5i}{4-3i} is

If [frac{1-i}{1+i}]^96= a+ib , then (a,b) is

The congugate of a complex number z is frac{1}{i-1} ,then the complex number is

The value of x, y which satisfy the equation frac{(1+i)x - 2i}{3+i} + frac{(2-3i)y +i}{3-i} = i are

The modulus of frac{1-i}{3+i}+frac{4i}{5} is

Express (3 + i) / (-5 - 4i) in the form of a + ib.

abs[(1+i)frac{2+i}{3+i}] =