Home
Class 11
MATHS
If z1=1-2i, z2=1+i and z3=3+4i, then [fr...

If `z_1=1-2i`, `z_2=1+i` and `z_3=3+4i`, then `[frac{1}{z_1}+frac{3}{z_2}][frac{z_3}{z_2}= `

A

`13-6i`

B

`13-3i`

C

`6-frac{13}{2}i`

D

`frac{13}{2}-3i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = 1-i and z_2 = 2+4i , then im[frac{z_1z_2}{z_1} =

If z_1 = (4,5) and z_2 = (-3,2) , then frac{z_1}{z_2} equals

Simplify: [ frac{1}{1-2i} + frac{3}{1+i} ] [ frac{3+i}{2-4i} ]

If z_1, z_2, z_3 are complex numbers such that abs(z_1)= abs(z_2) = abs(z_3) = abs(frac{1}{z_1}+frac{1}{z_2}+frac{1}{z_3}) = 1 , then abs(z_1+z_2+z_3) is

Let z_1 =2-i, z_2 = -2 +i, find Re[ frac{z_1 z_2}{z_1} ]

Let z_1 =2-i, z_2 = -2 +i, find Im[ frac{1}{z_1 z_2} ]

If z=x-iy and z^frac{1}{3}= a+ib , then frac{frac{x}{a}+frac{y}{b}}{a^2+b^2}=

z_1 =2-i, z_2 =1+i, find abs(frac{z_1+z_2+1}{z_1-z_2+1})

If abs(z_1) = abs(z_2) = ........= abs(z_n) =1, then show that abs(z_1+ z_2+.......+z_n) = abs(frac{1}{z_1}+frac{1}{z_2}+.........frac{1}{z_n})

If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5 , then