Home
Class 11
MATHS
i^2+i^3+…....+i^4000 =...

`i^2+i^3+…....+i^4000 = `

A

`A.1

B

0

C

i

D

`-i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

if i^2 =-1, then the sum i+ i^2 + i^3 +......... to 1000 terms is equal to

Find the value of: 1+ i^2 + i^4 + i^6 + i^8 +............+ i^20

Show that (1- 2i )/( 3 - 4i ) + (1 + 2i )/( 3 + 4i ) is real.

Find the value of (i^6 + i^7 + i^8 + i^9) / (i^2 + i^3)

Answer the following. Simplify the following and express in the form a + ib: (3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)

If ((1 + i) / (1 - i))^3 - ((1-i) / (1 + i))^3 = x + iy then find x and y.

If a and b are real and ( i ^(4) + 3i ) a + ( i -1) b + 5i ^(3) = 0, find a and b.

If a and b are real and ( i^4 + 3i) a + (i -1) b + 5 i^3 = 0, find a and b