Home
Class 11
MATHS
(1+i)^10, where i^2=-1, is equal to...

`(1+i)^10`, where `i^2=-1`, is equal to

A

`A.32i`

B

`B.64+i`

C

`C.24i-32`

D

`D.24i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(-sqrt3+i)^53 , where i^2 = -1 , is equal to

If A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and a_(ij)=i^2-2j ,i=j then A^-1 is equal to a) (1)/(9)[(4,1),(-1,2)] b) (1)/(9)[(0,-3),(-3,-1)] c) (1)/(9)[(0,3),(3,1)] d)None of these

The value of the sum sum_(n=1)^13(i^n+i^(n+1)) , where i= sqrt(-1) , equals

If [(x,1),(1,0)] and A^(2)=I , then A^(-1) is equal to

If I = sqrt(-1) , then 1+i^2+i^3-i^6+i^8 is equal to

If 3-2yi = 9^x-7i , where i^2 = -1 , x and y are real, then

If (1-i)^n = 2^n , then n is equal to

If A=[[x,1],[1,0]] and A^2=I , then A^(-1) is equal to: a) [[0,1],[1,0]] b) [[1,0],[0,1]] c) [[1,1],[1,1]] d) [[0,0],[0,0]]

If n is an odd integer, i= sqrt -1 then [ (1 + i)^(6n) + (1 - i)^(6n) ] is equal to