Home
Class 11
MATHS
The expression frac{(1+i)^n}{(1-i)^(n-2)...

The expression `frac{(1+i)^n}{(1-i)^(n-2)}` equals

A

`-i^(n+1)`

B

`-2i^(1+n)`

C

`i^(n+1)`

D

`-i^(n+1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(frac{1+i}{1-i})^2 =?

If n is any positive integer, then the value of frac{i^(4n+1)-i^(4n-1)}{2} equals

frac{{(1+i)}^2016} {{(1-i)}^2014} =

The number frac{(1-i)^3}{1-i^3} is equal to

If n is a positive integer then (frac{1+i}{1-i})^(4n+1) =

The smallest positive integer n for which (1+i)^(2n) = (1-i)^(2n) is

frac{(2n)!}{(1.3.5….(2n-1))n!} =

The value of (i^18+(frac{1}{i})^25)^3 is equal to

The modulus and amplitude of frac{1+2i}{1-(1-i)^2} are

The modulus and amplitude of frac{1+2i}{1-(1-i)^2} are