Home
Class 11
MATHS
If a,b,c,p,q,r are six complex numbers, ...

If a,b,c,p,q,r are six complex numbers, such that `frac{p}{a}+frac{q}{b}+frac{r}{c}=1+i` and `frac{a}{p}+frac{b}{q}+frac{c}{r} = 0`, where `i=sqrt(-1)`, then the value of `frac{p^2}{a^2}+frac{q^2}{b^2}+frac{r^2}{c^2}` is

A

0

B

`-1`

C

`2i`

D

`-2i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that frac{9pi}{8}-frac{9}{4}sin^-1(frac{1}{3}) = frac{9}{4}sin^-1(frac{2sqrt2}{3})

Show that tan^-1(frac{1}{2}) = frac{1}{3}tan^-1(frac{11}{2})

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =

Complex number z = frac{i-1}{cos(frac{pi}{3})+isin(frac{pi}{3}) in the polar form is

Show that frac{1-2i}{3-4i} + frac{1+2i}{3+4i} is a real

Find the real numbers x and y such that frac{x}{1+2i} + frac{y}{3+2i} = frac{5+6i}{-1+8i}

The argument of the complex number [frac{i}{2}-frac{2}{i}] is equal to

If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5 , then

Show that (frac{1}{sqrt 2}+frac{1}{sqrt 2}i )^10 + (frac{1}{sqrt 2}-frac{1}{sqrt 2}i )^10 = 0

a+ib form of the complex number (1+frac{2}{i})(1+frac{3}{i})(2+i)^-1 is