Home
Class 11
MATHS
Let z1 =3+4i and z2 = -1+2i. Then abs(z1...

Let `z_1 =3+4i` and `z_2 = -1+2i`. Then `abs(z_1+z_2)^2-2(abs(z_1)^2+abs(z_2)^2)` is equal to

A

`abs(z_1-z_2)^2`

B

`-abs(z_1-z_2)^2`

C

`abs(z_1)^2+abs(z_2)^2`

D

`abs(z_1)^2-abs(z_2)^2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 and z_2 are any complex numbers, then abs(z_1+z_2)^2+abs(z_1-z_2)^2 is equal to

if for the complex numbers z_1 and z_2 abs(1-barz_1z_2)^2-abs(z_1-z_2)^2 = k(1-abs(z_1)^2)(1-abs(z_2)^2) , then k is equal to

If z_1 = 1-i and z_2 = 2+4i , then im[frac{z_1z_2}{z_1} =

If z_1 = (4,5) and z_2 = (-3,2) , then frac{z_1}{z_2} equals

Let z_1 =2-i, z_2 = -2 +i, find Im[ frac{1}{z_1 z_2} ]

Let z_1 =2-i, z_2 = -2 +i, find Re[ frac{z_1 z_2}{z_1} ]

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1. z_2) = bar (z_1) . bar (z_2)

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1/ z_2) = bar (z_1) / bar (z_2)

For any two complex numbers z_1 and z_2 and any real numbers a and b, [abs(az_1-bz_2)]^2+[abs(bz_1+az_2)]^2 =

If z_1 and z_2 are any two complex numbers then abs(z_1+sqrt(z_1^2-z_2^2))+abs(z_1-sqrt(z_1^2-z_2^2)) is equal to