Home
Class 11
MATHS
A real value of x-satisfies the equation...

A real value of x-satisfies the equation `(frac{3-4ix}{3+4ix})` = `alpha` - i `beta`, if (`alpha`, `beta` `in` R) if `alpha^2`+`beta^2` =

A

`(alpha)^2-(beta)^2 = -1`

B

`(alpha)^2-(beta)^2 =1`

C

`(alpha)^2+(beta)^2=1`

D

`(alpha)^2-(beta)^2=2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

Write the quadratic equations in variable x, if alpha + beta = -6, alphabeta=4

Write the quadratic equations in variable x, if alpha + beta = 8, alphabeta= -3

IF alpha+beta=pi/2 , then cos alpha cos beta has a maximum value at beta =

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

alpha,beta are roots of y^2-2y-7=0 . Find alpha^2+beta^2

If alpha and beta are the roots of equation x^2-4x+1=0 , find alpha^2+beta^2

What will be the quadratic equation if alpha=2,beta=5 .

If alpha and beta are the roots of the equation x^2-9x+14=0 , find (i) alpha^2+beta^2