Home
Class 11
MATHS
If (sqrt8+i)^50 = 3^49(a+ib), then a^2+b...

If `(sqrt8+i)^50 = 3^49(a+ib)`, then `a^2+b^2` is

A

A.3

B

B.8

C

C.9

D

D.`sqrt8`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If [frac{3}{2}+frac{sqrt3i}{2}]^50 = 3^25(x+iy) , then x^2+y^2=

If Z= frac{(sqrt3+i)^3(3i+4)^2}{(8+6i)^2} , then abs(Z) is equal to

If frac{5(-8+6i)}{(1+I)^2} = a+ib , then (a,b) equals

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

If sqrt(a+ib) = x+iy , then possible value of sqrt((a-ib) is (a,b,x,y in R)

Solve the following: If a = (-1 + sqrt(3)i) / 2 , b = (-1 - sqrt(3)i) / 2 , show that a^2 = b and b ^2 = a

Express z = sqrt2 . e ^((3pi)/( 4) i ) in the a + ib from .

If (a + 3i) / (2 + ib) = 1 - i, show that 5a - 7b = 0.

If a= frac{-1+sqrt3 i}{2} , b= frac{-1-sqrt3 i}{2} , then show that a^2 =b and b^2 =a