Home
Class 11
MATHS
If abs(z) = max{abs(z-2),abs(z+2)}, then...

If `abs(z) = max{abs(z-2),abs(z+2)}`, then

A

`abs(z+barz) =1 `

B

`z+barz=2^2`

C

`abs(z+barz) = 2`

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 and z_2 are two non-zero complex numbers such that abs(z_1+z_2) = abs(z_1)+abs(z_2) , then arg(z_1)-arg(z_2) is equal to

If abs(z_1+z_2) = abs(z_1-z_2) , then the difference in the amplitudes of z_1 and z_2 is

If abs(z_1)=abs(z_2)=….....=abs(z_n) = 1 then the value of abs(z_1+z_2+z_3+…....+z_n) =

If abs(z_1) = abs(z_2) = ........= abs(z_n) =1, then show that abs(z_1+ z_2+.......+z_n) = abs(frac{1}{z_1}+frac{1}{z_2}+.........frac{1}{z_n})

If abs(z^2-1) =(abs(z))^2+1 , then z lies on

If abs(z_1) = abs(z_2) , is it necessary that z_1 = z_2 ?

For all complex numbers z_1, z_2 satisfying abs(z) = 12 and abs(z_2-3-4i) = 5 , the minimum value of abs(z_1-z_2) is

if for the complex numbers z_1 and z_2 abs(1-barz_1z_2)^2-abs(z_1-z_2)^2 = k(1-abs(z_1)^2)(1-abs(z_2)^2) , then k is equal to

If abs(z) =5 and w = frac{z-5}{z+5} , then Re(w) is equal to

If z_1, z_2, z_3 are complex numbers such that abs(z_1)= abs(z_2) = abs(z_3) = abs(frac{1}{z_1}+frac{1}{z_2}+frac{1}{z_3}) = 1 , then abs(z_1+z_2+z_3) is