Home
Class 11
MATHS
Complex number z = frac{i-1}{cos(frac{p...

Complex number `z = frac{i-1}{cos(frac{pi}{3})+isin(frac{pi}{3})` in the polar form is

A

`sqrt2(cos(frac{5pi}{12})+isin(frac{5pi}{12}))`

B

`sqrt2(cos(frac{pi}{4})+isin(frac{Pi}{4}))`

C

`sqrt2(cos(frac{pi}{6})+isin(frac{pi}{6}))`

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = cos(frac{pi}{6})+isin(frac{pi}{6}) , then

Write the complex number z= frac{1-i}{cos(pi/3)+i sin(pi/3)} in the polar form

If z_1 = sqrt2(cos(frac{pi}{4})+isin(frac{pi}{4})) and z_2 = sqrt3(cos(frac{pi}{3}+isin(frac{pi}{3})) , then abs(z_1z_2) is

The amplitude of sin(frac{pi}{5}) + i(1-cos(frac{pi}{5} is

[frac{1+cos(frac{pi}{12})+isin(frac{pi}{12})}{1+cos(frac{pi}{12})-isin(frac{pi}{12})}]^72 is equal to

Reduce( frac{1}{1-4i} - frac{2}{1+i} frac{3-4i}{5+i} ) to the standard form

If omega_n = cos(frac{2pi}{n})+sin(frac{2pi}{n}) , i^2 = -1 , then (x+y(omega_3)+z(omega_3)^2)(x+y(omega_3)^2+z(omega_3)) is equal to

The modulus of frac{1-i}{3+i}+frac{4i}{5} is

The value of [frac{1-cos(frac{Pi}{10})+isin(frac{Pi}{10})}{1-cos(frac{Pi}{10})-isin(frac{Pi}{10})]]^10 =

If 2[cos(frac{7pi}{5}) + isin(frac{7pi}{5})] is one of the values of z^frac{1}{5} , Then z =