Home
Class 11
MATHS
If z1 = sqrt2(cos(frac{pi}{4})+isin(frac...

If `z_1 = sqrt2(cos(frac{pi}{4})+isin(frac{pi}{4}))` and `z_2 = sqrt3(cos(frac{pi}{3}+isin(frac{pi}{3}))`, then `abs(z_1z_2)` is

A

6

B

sqrt2

C

sqrt6

D

sqrt3

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = cos(frac{pi}{6})+isin(frac{pi}{6}) , then

The amplitude of sin(frac{pi}{5}) + i(1-cos(frac{pi}{5} is

[frac{1+cos(frac{pi}{12})+isin(frac{pi}{12})}{1+cos(frac{pi}{12})-isin(frac{pi}{12})}]^72 is equal to

The value of [frac{1-cos(frac{Pi}{10})+isin(frac{Pi}{10})}{1-cos(frac{Pi}{10})-isin(frac{Pi}{10})]]^10 =

Complex number z = frac{i-1}{cos(frac{pi}{3})+isin(frac{pi}{3}) in the polar form is

If 2[cos(frac{7pi}{5}) + isin(frac{7pi}{5})] is one of the values of z^frac{1}{5} , Then z =

Show that frac{9pi}{8}-frac{9}{4}sin^-1(frac{1}{3}) = frac{9}{4}sin^-1(frac{2sqrt2}{3})

Show that cos^-1(frac{sqrt3}{2}) + 2sin^-1(frac{sqrt3}{2}) = frac{5pi}[6}

Prove the following: cos^-1(frac{3}{5})+cos^-1(frac{4}{5}) = frac{pi}{2}

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =