Home
Class 11
MATHS
If z = re^(itheta), then abs(e^(iz)) =...

If ` z = re^(itheta)`, then `abs(e^(iz)) = `

A

`e^(rsintheta)`

B

`e^(-rsintheta)`

C

`e^(-rcostheta)`

D

`e^(rcostheta)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If a= e^(itheta) , then frac{1+a}{1-a} is equal to

If iz^3+z^2-z+i= 0 , then abs(z) =

If z = (3sqrt7 +4i)^2(3sqrt7-4i)^3 then Re(z) =

z = r(Costheta + i Sintheta) = r e^(itheta), bar z = r(Costheta - i Sintheta) = r e^(-itheta) find (z/bar z + bar z/z)

Real part of e^e^(itheta) is

Solve the equation abs(z) = z+1+2i

If iz^4+1 = 0 then z can take the value

If z=(1+isqrt3)^100 , then frac{Re(z)}{Im(z)} equals

If abs(z+1) = z+2 (1+i), then find z