Home
Class 11
MATHS
[frac{1+cos(frac{pi}{12})+isin(frac{pi}{...

`[frac{1+cos(frac{pi}{12})+isin(frac{pi}{12})}{1+cos(frac{pi}{12})-isin(frac{pi}{12})}]^72 ` is equal to

A

0

B

`-1`

C

1

D

`frac{1}{2}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [frac{1-cos(frac{Pi}{10})+isin(frac{Pi}{10})}{1-cos(frac{Pi}{10})-isin(frac{Pi}{10})]]^10 =

If z = cos(frac{pi}{6})+isin(frac{pi}{6}) , then

If z_1 = sqrt2(cos(frac{pi}{4})+isin(frac{pi}{4})) and z_2 = sqrt3(cos(frac{pi}{3}+isin(frac{pi}{3})) , then abs(z_1z_2) is

The amplitude of sin(frac{pi}{5}) + i(1-cos(frac{pi}{5} is

Show that 2cot^-1(frac{3}{2})+sec^-1(frac{13}{12}) = frac{pi}{2}

Complex number z = frac{i-1}{cos(frac{pi}{3})+isin(frac{pi}{3}) in the polar form is

Show that cos^-1(frac{sqrt3}{2}) + 2sin^-1(frac{sqrt3}{2}) = frac{5pi}[6}

Select the correct option from the given alternatives: The principal value branch of sec^-1x is A) [-frac{pi}{2},frac{pi}{2}]-{0} B) [0,pi]-[frac{pi}{2}] C) (0,pi) D) (-frac{pi}{2},frac{pi}{2})

Show that frac{9pi}{8}-frac{9}{4}sin^-1(frac{1}{3}) = frac{9}{4}sin^-1(frac{2sqrt2}{3})

Select the correct option from the given alternatives: cos^-1(cos(frac{7pi}{6})) = ..... A) frac{7pi}{6} B) frac{5pi}{6} C) frac{pi}{6} D) frac{3pi}{2}