Home
Class 11
MATHS
(-sqrt3+i)^53, wherei^2 = -1, is equal t...

`(-sqrt3+i)^53`, where`i^2 = -1`, is equal to

A

`2^53(sqrt3+2i)`

B

`2^52(sqrt3-i)`

C

`2^53(frac{sqrt3}{2}+frac{1}{2}i)`

D

`2^53(sqrt3-i)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+i)^10 , where i^2=-1 , is equal to

If I = sqrt(-1) , then 1+i^2+i^3-i^6+i^8 is equal to

If 3-2yi = 9^x-7i , where i^2 = -1 , x and y are real, then

The value of the sum sum_(n=1)^13(i^n+i^(n+1)) , where i= sqrt(-1) , equals

The value of (frac{1+sqrt3i}{1-sqrt3i})^64+(frac{1-sqrt3i}{1+sqrt3i})^64 is equal to

If I=int(dx)/sqrt((1-x)(x-2)) , then I is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

If Z= frac{(sqrt3+i)^3(3i+4)^2}{(8+6i)^2} , then abs(Z) is equal to

If i = sqrt(-1) , then 4+5(-frac{1}{2}+frac{isqrt3}{2})^334+3(-frac{1}{2}+frac{isqrt3}{2})^365 is equal to