Home
Class 11
MATHS
If 1, omega,(omega)^2 are the cube roots...

If 1, omega,(omega)^2 are the cube roots of unity, then their product is

A

0

B

omega

C

`-1`

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega , (omega)^2 are the cube roots of unity, then frac{1}{1+2(omega)}+frac{1}{2+omega}-frac{1}{1+omega} =

If 1,omega,(omega)^2 are the cube roots of unity, then (omega)^2(1+omega)^3-(1+(omega)^2)omega=

If 1 , omega and (omega)^2 are the cube roots of unity, then (1-omega+(omega)^2)(1-(omega)^2+(omega)^4)….......upto 8 terms is

If 1,omega,(omega)^2 are the cube roots of unity, then (a+b+c)(a+b(omega)+c(omega)^2)(a+b(omega)^2+c(omega)) =

If 1, omega , (omega)^2 are the cube roots of unity and if alpha = omega+2(omega)^2-3 then (alpha)^3+12(alpha)^2+48alpha+3 =

If 1 , omega , omega^2 are the cube roots of unity,then /_\=|[1,omega^n,omega^n],[omega^n,omega^(2n),1],[omega^(2n),1,omega^n]|

If n ne 3k and 1 , omega , omega ^(2) are the cube roots of units , then Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)| has the value

If 1, omega , omega^2 are cube roots of unity prove that (1 / (1 + 2omega)) - (1 / (1 + omega)) + (1 / (2 + omega)) = 0

If 1, omega,(omega)^2,.......omega^(n-1) are the nth roots of unity,then (2-omega)(2-(omega)^2)…...(2-(omega)^(n-1)) is equal to 2^n