Home
Class 11
MATHS
If omega = frac{-1+sqrt(3)i}{2}, then (...

If ` omega = frac{-1+sqrt(3)i}{2}`, then `(3+omega+3(omega)^2)^4 = `

A

`16`

B

`-16`

C

`16(omega)`

D

`16(omega)^2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then (1-omega+(omega)^2)^3 =

If omega is a complex cube root of unity, then (1+omega-(omega)^2)^3 - (1-omega+(omega)^2)^3 =

If omega is the cube root of units, then, (3 + 5 omega + 3 omega^2 ) + (3 + 3 omega + 5 omega^2 )=?

If z= x+iy and omega = frac{1-iz}{z-i} , the abs(omega) = 1 shows that in complex plane.

If omega is a complex cube root of unity , then (1+omega-2(omega)^2)^4+(4+omega+4(omega)^2)^4=

If omega^3 = 1 and omega != 1, then (1+ omega )(1+ omega^2 )(1+ omega^4 )(1+ omega^8 )

Given omega = -frac{1}{2}+frac{isqrt(3)}{2} , then the value of /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^4]|

If cube root of 1 is omega,then the value of (3+omega+3(omega)^2)^4 is

If omega is a complex cube root of unity, then (1+omega)(1+(omega)^2)(1+(omega)^4)(1+(omega)^8)) ….....upto 2n factors = …....

If omega is a complex cube root of unity, show that (3+3 omega+5 omega^2)^6 - (2+6omega+2 omega^2)^3 =0