Home
Class 11
MATHS
(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =...

`(-frac{1}{2}+frac{sqrt3}{2}i)^1000 = `

A

`frac{1}{2}+frac{sqrt3}{2}i`

B

`frac{1}{2}-frac{sqrt3}{2}i`

C

`-frac{1}{2}+frac{sqrt3}{2}i`

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If i = sqrt(-1) , then 4+5(-frac{1}{2}+frac{isqrt3}{2})^334+3(-frac{1}{2}+frac{isqrt3}{2})^365 is equal to

Show that (frac{1}{sqrt 2}+frac{1}{sqrt 2}i )^10 + (frac{1}{sqrt 2}-frac{1}{sqrt 2}i )^10 = 0

Prove the following: sin^-1(frac{1}{sqrt2})-3sin^-1(frac{sqrt3}{2}) = frac{-3pi}{4}

Prove the following: sin^-1(frac{-1}{2})+cos^-1(frac{-sqrt3}{2}) = cos^-1(frac{-1}{2})

If [frac{3}{2}+i frac{sqrt3}{2}]^50 = 3^25(x-iy) ,where x,y are real and i=sqrt(-1) , then the order pair (x,y) is given by

If [frac{3}{2}+frac{sqrt3i}{2}]^50 = 3^25(x+iy) , then x^2+y^2=

Show that cos^-1(frac{sqrt3}{2}) + 2sin^-1(frac{sqrt3}{2}) = frac{5pi}[6}

If i=sqrt(-1) , then 4+5[frac{-1}{2}+frac{isqrt(3)}{2}]^334+3[frac{-1}{2}+frac{isqrt(3)}{2}]^365 =

If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5 , then

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to