Home
Class 11
MATHS
The value of (frac{1+sqrt3i}{1-sqrt3i})^...

The value of `(frac{1+sqrt3i}{1-sqrt3i})^64+(frac{1-sqrt3i}{1+sqrt3i})^64`is equal to

A

`zero`

B

`-1`

C

1

D

i

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The amplitude of frac{1+sqrt3i}{sqrt3+i} is

The value of (-i)^frac{1}{3} is

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to

frac{(-1+isqrt3)^15}{(1-i)^20}+frac{(-1-isqrt3)^15}{(1+i)^20} is equal to

Value of [frac{-1+sqrt(-3)}{2}]^40 +[frac{-1-sqrt(-3)}{2}]^40 is

[frac{1+i}{sqrt2}]^8+[frac{1-i}{sqrt2}]^8

Show that (frac{1+i}{sqrt 2})^8 + (frac{1-i}{sqrt 2})^8 = 2

The number frac{(1-i)^3}{1-i^3} is equal to

The value of (i^18+(frac{1}{i})^25)^3 is equal to