Home
Class 11
MATHS
frac{(-1+isqrt3)^15}{(1-i)^20}+frac{(-1-...

`frac{(-1+isqrt3)^15}{(1-i)^20}+frac{(-1-isqrt3)^15}{(1+i)^20}` is equal to

A

`A.-64`

B

`B.-32`

C

`C.-16`

D

`D.frac{1}{16}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The number frac{(1-i)^3}{1-i^3} is equal to

The value of (frac{1+sqrt3i}{1-sqrt3i})^64+(frac{1-sqrt3i}{1+sqrt3i})^64 is equal to

frac{{(1+i)}^2016} {{(1-i)}^2014} =

If frac{(1+i)^3}{(1-i)^3}-frac{(1-i)^3}{(1+i)^3} = x+iy , then

If i = sqrt(-1) , then 4+5(-frac{1}{2}+frac{isqrt3}{2})^334+3(-frac{1}{2}+frac{isqrt3}{2})^365 is equal to

The value of [frac{1+isqrt3}{1-isqrt3}]^6 + [frac{1-isqrt3}{1+isqrt3}]^6 is

[frac{sqrt3+i}{2}]^6+[frac{i-sqrt3}{2}]^6 is equal to

The expression frac{(1+i)^n}{(1-i)^(n-2)} equals

If z = frac{1-isqrt3}{1+isqrt3} , then arg(z) =

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =