Home
Class 11
MATHS
If omegan = cos(frac{2pi}{n})+sin(frac{2...

If `omega_n = cos(frac{2pi}{n})+sin(frac{2pi}{n})`, `i^2 = -1`, then `(x+y(omega_3)+z(omega_3)^2)(x+y(omega_3)^2+z(omega_3))` is equal to

A

0

B

`x^2+y^2+z^2`

C

`x^2+y^2+z^2-yz-zx-xy`

D

`x^2+y^2+z^2+yz+zx+xy`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(1-omega+(omega)^2)^5+(1+omega-(omega)^2)^5 =

Complex number z = frac{i-1}{cos(frac{pi}{3})+isin(frac{pi}{3}) in the polar form is

The value of (1+2(omega)+(omega)^2)^(3n)-(1+omega+2(omega)^2)^(3n) =

If omega^3 = 1 and omega != 1, then (1+ omega )(1+ omega^2 )(1+ omega^4 )(1+ omega^8 )

If omega = frac{-1+sqrt(3)i}{2} , then (3+omega+3(omega)^2)^4 =

Let omega be the imaginary root of x^n = 1 then (5-omega)(5-(omega)^2)…...(5-(omega)^(n-1)) is equal to

If omega is a complex cube root of unity, then (x+y)^3+(x(omega)+y(omega)^2)^3+(x(omega)^2+y(omega))^3=

Given omega = -frac{1}{2}+frac{isqrt(3)}{2} , then the value of /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^4]|

If abs(z)= 1 and omega = frac{z-1}{z+1} (where z != -1 ), the Re(omega) is

If omega is a complex cube root of unity, then (1+omega-(omega)^2)^3 - (1-omega+(omega)^2)^3 =