Home
Class 11
MATHS
If z = (k+4)+i(sqrt(9-k^2)), then the lo...

If `z = (k+4)+i(sqrt(9-k^2))`, then the locus of z is, (where i = sqrt(-1))

A

a straight line

B

a circle

C

an ellipse

D

a parabola

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If abs(z-3+ i) = 4 then, the locus of z is

If z= frac{-2}{1+sqrt3i} , then the value of arg(z) is

If z = (3sqrt7 +4i)^2(3sqrt7-4i)^3 then Re(z) =

Find the locus of z = x + iy if |z - 3i| = 4.

Express the following in the form of (a+ib), a,b in R, i= sqrt (-1) State the values of a and b: ( sqrt 5 +2 sqrt (-4) )+(1- sqrt (-9) )+(2+3i)(2-3i)

Express the follwing in the form of a + ib, a , b in R i=sqrt ( -1). State the value of a and b. ( - sqrt5 + 2 sqrt ( -4) ) + (1 - sqrt ( -9 ))+ (2 + 3i ) (2 - 3i )

Express the following in the form of a + ib, where a, b in R , i = sqrt-1 . State the value of a and b. (-sqrt(5) + 2sqrt(-4)) + (1 - (sqrt-9)) + (2 + 3i) (2 - 3i)

The modulus of z = 1+sqrt(3)i is

If z = frac{sqrt 3 + i}{2} , then z^69 =