Home
Class 11
MATHS
If omega is a complex root of the equati...

If `omega` is a complex root of the equation `z^3 = 1`, then `omega+(omega)^[(frac{1}{2}+ frac{3}{8}+frac{9}{32}+frac{27}{128}+…...)` is equal to

A

`A.-1`

B

`B.0`

C

`C.9`

D

`D.i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If i = sqrt(-1) , then 4+5(-frac{1}{2}+frac{isqrt3}{2})^334+3(-frac{1}{2}+frac{isqrt3}{2})^365 is equal to

Show that tan^-1(frac{1}{2}) = frac{1}{3}tan^-1(frac{11}{2})

(-frac{1}{2}+frac{sqrt3}{2}i)^1000 =

If omega is the complex cube of unity, find the value of omega + frac{1}{omega}

Simplify: [ frac{1}{1-2i} + frac{3}{1+i} ] [ frac{3+i}{2-4i} ]

Prove the following: tan^-1(frac{1}{2})+tan^-1(frac{1}{3}) = frac{pi}{4}

Show that 2cot^-1(frac{3}{2})+sec^-1(frac{13}{12}) = frac{pi}{2}

Prove the following: 2tan^-1(frac{1}{3})+cos^-1(frac{3}{5}) = frac{pi}{2}

If z=[frac{sqrt3}{2}+frac{i}{2}]^5+[frac{sqrt3}{2}-frac{i}{2}]^5 , then

The complex number z satisfying the equation abs(frac{z-12}{z-8i})=frac{5}{3}, abs(frac{z-4}{z-8}) = 1