Home
Class 11
MATHS
Given omega = -frac{1}{2}+frac{isqrt(3)}...

Given `omega = -frac{1}{2}+frac{isqrt(3)}{2}`, then the value of`/_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^4]|`

A

`A.3omega`

B

`B.3omega^2`

C

`C.3omega(omega-1)`

D

`D.3omega(1-omega)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be a complex number such that 2omega+1 = z where z = sqrt(-3) . If /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^7]| = 3k , then k is equal to

(1-omega+(omega)^2)^5+(1+omega-(omega)^2)^5 =

If omega = frac{-1+sqrt(3)i}{2} , then (3+omega+3(omega)^2)^4 =

If 1 , omega , omega^2 are the cube roots of unity,then /_\=|[1,omega^n,omega^n],[omega^n,omega^(2n),1],[omega^(2n),1,omega^n]|

Select and write the correct answer from the given alternatives in each of the following:The value of |(1,1,1),(1,omega,omega^2),(1,omega^2,omega)| is (it is given that omega=(-1+sqrt3i)/2)

If omega is an imaginary cube root of unity, then the value of the determinant /_\ = |[1+omega,omega^2,-omega],[1+omega^2,omega,-omega^(2)],[omega+omega^2,omega,-omega^(2)]| is

The value of (1+2(omega)+(omega)^2)^(3n)-(1+omega+2(omega)^2)^(3n) =

Select and write the correct answer from the given alternatives in each of the following:The value of |(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)|,omega being a cube root of unity,is

If n ne 3k and 1 , omega , omega ^(2) are the cube roots of units , then Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)| has the value