Home
Class 11
MATHS
The value of 2^n [1.3.5....(2n - 3)(2n ...

The value of `2^n [1.3.5....(2n - 3)(2n - 1)` is

A

`A.frac{(2^n)!}{n!}`

B

`B.frac{(2^n)!}{2^n}`

C

`C.frac{n!}{(2n!)}`

D

`D.(2n)!`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Select the correct answer from the given alternatives. If n is an odd positive integer then the value of 1 + (i)^(2n) + (i)^(4n) + (i)^(6n) is …….. .

Solve the following: Find the value of ((1 + i)^(2n) - (1 - i)^(2n)) / ((1 + omega^4 - omega^2) (1 - omega^4 + omega^2))

If n is an odd positive integer then the value of (1+ i^(2n) + i^(4n) + i^(6n) ) ?

Find the sum of 1^1 n + 2^2 (n - 1) + 3^2 (n - 2) + 4^2 (n -3) ……upto 'n' terms.

frac{(2n)!}{(1.3.5….(2n-1))n!} =

Prove, by method of induction, for all n in N : 2 + 3.2 +4.2^2 +...+ (n + 1) (2^(n-1)) = n.2^n

The value of the sum sum_(n=1)^13(i^n+i^(n+1)) , where i= sqrt(-1) , equals