Home
Class 12
CHEMISTRY
An element crystallises in a structure h...

An element crystallises in a structure having a fcc unit cell of an edge 200 pm. Calculate its density if 400 g of this element contain `48xx10^(23)` atoms.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the density of the element that crystallizes in a face-centered cubic (FCC) structure. Here are the step-by-step calculations: ### Step 1: Convert the edge length from picometers to centimeters Given edge length \( a = 200 \) pm (picometers). 1 pm = \( 10^{-10} \) cm, therefore: \[ a = 200 \, \text{pm} = 200 \times 10^{-10} \, \text{cm} = 2 \times 10^{-8} \, \text{cm} \] ### Step 2: Determine the number of atoms in 400 g of the element We are given that 400 g of the element contains \( 48 \times 10^{23} \) atoms. ### Step 3: Calculate the mass of one atom To find the mass of one atom, we can use the formula: \[ \text{Mass of one atom} = \frac{\text{Total mass}}{\text{Number of atoms}} = \frac{400 \, \text{g}}{48 \times 10^{23}} \] Calculating this gives: \[ \text{Mass of one atom} = \frac{400}{48 \times 10^{23}} = \frac{400}{48} \times 10^{-23} \approx 8.33 \times 10^{-23} \, \text{g} \] ### Step 4: Calculate the molar mass (M) of the element Using Avogadro's number \( N_A = 6.023 \times 10^{23} \): \[ M = \text{Mass of one atom} \times N_A = 8.33 \times 10^{-23} \, \text{g} \times 6.023 \times 10^{23} \approx 50.18 \, \text{g/mol} \] ### Step 5: Determine the number of atoms per unit cell (Z) for FCC In a face-centered cubic (FCC) structure, the number of atoms per unit cell \( Z = 4 \). ### Step 6: Calculate the volume of the unit cell The volume \( V \) of the cubic unit cell can be calculated using the formula: \[ V = a^3 = (2 \times 10^{-8} \, \text{cm})^3 = 8 \times 10^{-24} \, \text{cm}^3 \] ### Step 7: Calculate the density (D) The density can be calculated using the formula: \[ D = \frac{Z \times M}{V \times N_A} \] Substituting the values: \[ D = \frac{4 \times 50.18 \, \text{g/mol}}{8 \times 10^{-24} \, \text{cm}^3 \times 6.023 \times 10^{23}} \] Calculating this gives: \[ D = \frac{200.72}{4.8184 \times 10^{-1}} \approx 41.656 \, \text{g/cm}^3 \] ### Final Answer The density of the element is approximately \( 41.656 \, \text{g/cm}^3 \). ---

To solve the problem, we need to calculate the density of the element that crystallizes in a face-centered cubic (FCC) structure. Here are the step-by-step calculations: ### Step 1: Convert the edge length from picometers to centimeters Given edge length \( a = 200 \) pm (picometers). 1 pm = \( 10^{-10} \) cm, therefore: \[ a = 200 \, \text{pm} = 200 \times 10^{-10} \, \text{cm} = 2 \times 10^{-8} \, \text{cm} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

An element cyrstallises in a structure having a fcc unit cell of and edge 200 pm. Calculate its density if 200 g of this element contains 24xx 10^(23) atoms.

An element crystallizes in a structure having fee unit cell of an edge 200 pm. Calculate the density if 200 g of this element contains 24 xx 10^(23) atoms.

Density of a unit cell is respresented as rho = (" Effective no. of atoms (s)" xx "Mass of a unit cell ")/("Volume of a unit cell ")=(Z.M)/(N_(A).a^(3)) where , Z =mass of effective no . of atoms(s) or ion (s). M= At . mass// formula N_(A) = Avogadro' s no . rArr 6.0323 xx 10^(23) a= edge length of unit cell An element crystallizes in a structure having fcc unit cell of an edge 200 pm . Calculate the density , if 100 g of this element contains 12xx10^(23) atoms :

An element crystallises in fcc lattice with cell edge of 400 pm. Calculate its density if 250 g of this element contain 2.5 xx 10^(24) atoms.

An element crystallizes in a f.c.c. lattice with cell edge of 250 pm. Calculate the density if 300 g of this element contain 2 xx 10^(24) atoms.

An element crystallises in a f.c.c. lattice with edge length of 400 pm. Calculate the density if 200 g of this element contain 2.5xx10^(24) atoms.

An element exists in bcc lattice with a cell edge of 288 pm. Calculate its molar density is 7.2g//cm^(3)

An element (At. Mass =50 g/mol) having fcc structure has unit cell edge length 400 pm. The density of element is