Home
Class 12
CHEMISTRY
Sodium crystallises in a cubic lattice a...

Sodium crystallises in a cubic lattice and the edge length of the unit cell is 430 pm. Calculate the number of atoms in the unit cell. (Atomic mass Na = 23 amu, Density of Na = 0.9623 g `cm^(-3)`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the number of atoms in the unit cell of sodium, we will use the formula for density and rearrange it to find the number of atoms per unit cell (Z). ### Step-by-Step Solution: 1. **Identify the Given Data:** - Atomic mass of Sodium (m) = 23 amu - Density of Sodium (D) = 0.9623 g/cm³ - Edge length of the unit cell (a) = 430 pm = 430 x 10⁻¹² m = 4.3 x 10⁻⁸ cm - Avogadro's number (Nₐ) = 6.022 x 10²³ mol⁻¹ 2. **Convert the Edge Length to cm:** - Given a = 430 pm, we convert it to centimeters: \[ a = 430 \, \text{pm} = 430 \times 10^{-12} \, \text{m} = 4.3 \times 10^{-8} \, \text{cm} \] 3. **Calculate the Volume of the Unit Cell (V):** - The volume of the cubic unit cell is given by: \[ V = a^3 = (4.3 \times 10^{-8} \, \text{cm})^3 = 7.97 \times 10^{-24} \, \text{cm}^3 \] 4. **Use the Density Formula to Find Z:** - The formula for density is: \[ D = \frac{Z \cdot m}{V} \] - Rearranging this formula to solve for Z gives: \[ Z = \frac{D \cdot V}{m} \] 5. **Substituting the Values:** - Substitute the known values into the equation: \[ Z = \frac{0.9623 \, \text{g/cm}^3 \cdot 7.97 \times 10^{-24} \, \text{cm}^3}{23 \, \text{g/mol}} \] - Calculate Z: \[ Z = \frac{0.9623 \cdot 7.97 \times 10^{-24}}{23} \] \[ Z = \frac{7.66 \times 10^{-24}}{23} \approx 3.34 \times 10^{-25} \, \text{mol} \] 6. **Convert Z to Number of Atoms:** - To find the number of atoms in the unit cell, multiply Z by Avogadro's number: \[ \text{Number of atoms} = Z \cdot N_a = 3.34 \times 10^{-25} \, \text{mol} \cdot 6.022 \times 10^{23} \, \text{mol}^{-1} \approx 2 \] ### Final Answer: The number of atoms in the unit cell of sodium is **2**.

To solve the problem of calculating the number of atoms in the unit cell of sodium, we will use the formula for density and rearrange it to find the number of atoms per unit cell (Z). ### Step-by-Step Solution: 1. **Identify the Given Data:** - Atomic mass of Sodium (m) = 23 amu - Density of Sodium (D) = 0.9623 g/cm³ - Edge length of the unit cell (a) = 430 pm = 430 x 10⁻¹² m = 4.3 x 10⁻⁸ cm ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Sodium crystallizes in the cubic lattice and the edge of the unit cell is 430 pm. Calculate the number of atoms in a unit cell. (Atomic mass of Na = 23.0 density = 0.9623g cm^(-3) , N_A = 6.023 xx 10^(23) mol^(-1) ).

A metal crystallises with a body-centred cubic lattice. The edge length of the unit cell is 360 pm. Radius of the metal atom is

Polonium crystallises in a simple cubic structure. If the edge length of the unit cel is 336 pm, calculate the atomic radius of polonium.

Xenon crystallises in face - centered cubic , and the edge of the unit cell is 620 pm .The radius of a xenon atom is

a metal crystallizes with a face-centered cubic lattice.The edge of the unit cell is 408 pm. The diameter of the metal atom is :

a metal crystallizes with a face-centered cubic lattice.The edge of the unit cell is 408 pm. The diameter of the metal atom is :

a metal crystallizes with a body-centered cubic lattice.The edge of the unit cell is 408 pm. The diameter of the metal atom is :

Silver metal crysatllises with a face centred cubic lattice. The length of the unit cell is found to be 450 pm. Calulate the atomic radius.

A metal crystallizes with a body-centred cubic lattice. The length of the unit cell edge is found to be 265 pm. Calculate the atomic radius.

Chromium metal crystallizes with a body-centred cubic lattice. The edge length of the unit cell is found to be 287 pm. Calculate the atomic radius. What would be the density of chromium in g cm^(-3) ? (atomic mass of Cr = 52.99)