Home
Class 12
CHEMISTRY
An element with density 10 g cm^(-3) for...

An element with density 10 g `cm^(-3)` forms a cubic unit cell with edge length `3xx10^(-8)cm`. What is the nature of the cubic unit cell if the atomic mass of the element is 81 g `mol^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the cubic unit cell for the given element, we will follow these steps: ### Step 1: Understand the given data - Density (D) = 10 g/cm³ - Edge length (a) = 3 × 10^(-8) cm - Atomic mass (M) = 81 g/mol ### Step 2: Use the formula for density The formula for density (D) in terms of the number of atoms per unit cell (Z), atomic mass (M), Avogadro's number (N_A), and edge length (a) is given by: \[ D = \frac{Z \cdot M}{N_A \cdot a^3} \] Where: - \(D\) = Density - \(Z\) = Number of atoms per unit cell - \(M\) = Molar mass of the element - \(N_A\) = Avogadro's number (approximately \(6.022 \times 10^{23} \, \text{mol}^{-1}\)) - \(a\) = Edge length of the unit cell ### Step 3: Rearrange the formula to find Z We can rearrange the formula to solve for Z: \[ Z = \frac{D \cdot N_A \cdot a^3}{M} \] ### Step 4: Substitute the values into the equation Substituting the known values: - \(D = 10 \, \text{g/cm}^3\) - \(N_A = 6.022 \times 10^{23} \, \text{mol}^{-1}\) - \(a = 3 \times 10^{-8} \, \text{cm}\) - \(M = 81 \, \text{g/mol}\) Calculating \(a^3\): \[ a^3 = (3 \times 10^{-8})^3 = 27 \times 10^{-24} \, \text{cm}^3 \] Now substituting into the equation for Z: \[ Z = \frac{10 \cdot (6.022 \times 10^{23}) \cdot (27 \times 10^{-24})}{81} \] ### Step 5: Calculate Z Calculating the numerator: \[ 10 \cdot (6.022 \times 10^{23}) \cdot (27 \times 10^{-24}) = 10 \cdot 6.022 \cdot 27 \times 10^{-1} = 1625.94 \, \text{(approx)} \] Now dividing by 81: \[ Z = \frac{1625.94}{81} \approx 20.1 \] ### Step 6: Determine the nature of the unit cell Since Z is approximately 2, we can conclude that the nature of the cubic unit cell is: - **Body-Centered Cubic (BCC)**: A BCC unit cell has Z = 2. ### Final Answer The nature of the cubic unit cell is **Body-Centered Cubic (BCC)**. ---

To determine the nature of the cubic unit cell for the given element, we will follow these steps: ### Step 1: Understand the given data - Density (D) = 10 g/cm³ - Edge length (a) = 3 × 10^(-8) cm - Atomic mass (M) = 81 g/mol ### Step 2: Use the formula for density ...
Promotional Banner

Similar Questions

Explore conceptually related problems

An element with density 11.2"g cm"^(-3) forms a fcc lattice with edge length of 4xx10^(-8) cm. Calculate the atomic mass of the element.

An element with molar mass 27 g mol^(-1) forms a cubic unit cell with edge length 4.05 xx 10^(-8) cm. If its density is 2.7g cm^(-3) , what is the nature of the cubic unit cell?

An element with density 11.2 g cm^(-3) forms a f. c. c. lattice with edge length of 4xx10^(-8) cm. Calculate the atomic mass of the element. (Given : N_(A)= 6.022xx10^(23) mol^(-1)

An element with density 2.8 cm^(3) forms a f.c.c unit cell with edge length 4xx10^(-8) cm. calculate the molar mass of the element. Given: (N_(A)=6.022xx10^(23)) mol^(-1)

An element with molar mass 2.7 xx 10^-2 kg mol^(-1) forms a cubic unit cell with edge length 405pm.If its density is 2.7 xx 10^(3) kg^(-3) , what is the nature of the cubic unit cell?

An element with molar mass 2.7 xx 10^(2) kg mol^(-1) forms a 2.7 xx 10^(3) kg^(-3) , what is the nature of the cubic unit cell?

An element with molar mas 2.7xx10^(-2)" kg mol"^(-1) forms a cubic unit cell with edge length 405 pm. If its density is 2.7xx10^(-3)kgm^(-3) , the radius of the element is approximately ______ xx 10^(-12) m (to the nearest integer).

An element of density 8.0 g/cm3 forms an FCC lattice with unit cell edge of 300 pm. Calculate the number of atoms present in 0.5kg of the element.

The density of chormium is 7.2"g cm"^(-3) . If the unit cell is a cube edge length of 298 pm, determine the type of the unit cell. (Atomic mass of Cr = 52 amu)