Home
Class 11
CHEMISTRY
If C(1),C(2),C(3)… represent the speeds ...

If `C_(1),C_(2),C_(3)…` represent the speeds of `n_(1),n_(2),n_(3) …` molecules respectively, then root mean sqare speed will be:

A

`[(n_(1) C_(1)^(2) + n_(2) C_(2)^(2) + n_(3) C_(3)^(2) + ....)/(n_(1) + n_(2) + n_(3) +.....)]^(1//2)`

B

`([n_(1) C_(1)^(2) + n_(2) C_(2)^(2) + n_(3) C_(3)^(2) + ....]^(1//2))/(n_(1) + n_(2) + n_(3) +.....)`

C

`((n_(1) C_(1)^(2))^(1//2))/(n_(1)) + ((n_(2) C_(2)^(2))^(1//2))/(n_(2)) + ((n_(3) C_(3)^(2))^(1//2))/(n_(3)) + ....`

D

`[((n_(1) C_(1) + n_(2) C_(2) + n_(3) C_(3) + ......)^(2))/((n_(1) + n_(2) + n_(3) + .....))]^(1//2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`r.m.s` velocity is square root of square of velocity possessed by different fraction of molecules.
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(1), C_(2), C_(3) ….. represent the speeds on n_(1), n_(2) , n_(3)….. molecules, then the root mean square speed is

At 27°C, the average speed of N_(2) molecules is x ms^(-1) At 927°, the speed will be_______ x ms^(-1)

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

If a variable takes value 0,1,2,3,....,n with frequencies 1,C(n,1),C(n,2),C(n,3),...,C(n,n) respectively, then the arithmetic mean is

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

The density of carbon dioxide gas at 27^(@)C and at pressure 1000 N//m^(2) is 1 kg m^(-3) . Find the root mean square speed of its molecule at 0^(@)C . (pressure is constant)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .