Home
Class 12
BIOLOGY
Cyt a3 has...

`Cyt a_3` has

A

Fe and Mg

B

Cu and Mg

C

Fe and Cu

D

Fe, Mg and Cu.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • RESPIRATION

    DINESH PUBLICATION ENGLISH|Exercise REVISION QUESTIONS FROM COMPETITIVE EXAMS.|436 Videos
  • REPTILIA-CREEPING VERTEBRATES

    DINESH PUBLICATION ENGLISH|Exercise CHECK YOUR GRASP|10 Videos
  • ROOT

    DINESH PUBLICATION ENGLISH|Exercise CHECK YOUR GRASP|10 Videos

Similar Questions

Explore conceptually related problems

Cyt a_(3) possesses

The equation A/(x-a_1)+A_2/(x-a_2)+A_3/(x-a_3)=0 ,where A_1,A_2,A_3gt0 and a_1lta_2lta_3 has two real roots lying in the invervals. (A) (a_1,a_2) and (a_2,a_3) (B) (-oo,a_1) and (a_3,oo) (C) (A_1,A_3) and (A_2,A_3) (D) none of these

Which of the following is true regarding the given electron transport chain? CoQrarrCyt c rarr Cyt aa_(3) rarr O_(2)

a_1, a_2, a_3, in R-{0} and a_1+a_2cos2x+a_3sin^2x=0fora l lx in R , then (a)vector vec a=a_1 hat i+a_2 hat j+a_3 hat ka n d vec b=4 hat i+2 hat j+ hat k are perpendicular to each other (b)vector vec a=a_1 hat i+a_2 hat j+a_3 hat ka n d vec b=- hat i+ hat j+2 hat k are parallel to each other (c)vector vec a=a_1 hat i+a_2 hat j+a_3 hat k is of length sqrt(6) units, then one of the ordered triple (a_1, a_2, a_3)=(1,-1,-2) (d)are perpendicular to each other if 2a_1+3a_2+6a_3=26 ,t h e n|a_1 hat i+a_2 hat j+a_3 hat k|i s2sqrt(6)

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat k and vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b . If the angle between a and b is pi/6, then prove that |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2=1/4(a_1 ^2+a_2 ^2+a_3 ^2)(b_1 ^2+b_2 ^2+b_3 ^2)

Cyt. a and a_(3) are the components of

If a_0, a_1, a_2, a_3 are all the positive, then 4a_0x^3+3a_1x^2+2a_2x+a_3=0 has least one root in (-1,0) if (a) a_0+a_2=a_1+a_3 and 4a_0+2a_2>3a_1+a_3 (b) 4a_0+2a_2<3a_1+a_3 (c) 4a_0+2a_2=3a_1+a_0 and 4a_0+a_2lta_1+a_3 (d) none of these

If a_0, a_1, a_2, a_3 are all the positive, then 4a_0x^3+3a_1x^2+2a_2x+a_3=0 has least one root in (-1,0) if

If the equation z^4+a_1z^3+a_2z^2+a_3z+a_4=0 where a_1,a_2,a_3,a_4 are real coefficients different from zero has a pure imaginary root then the expression (a_3)/(a_1a_2)+(a_1a_4)/(a_2a_3) has the value equal to

Let a_1=0 and a_1,a_2,a_3 …. , a_n be real numbers such that |a_i|=|a_(i-1) + 1| for all I then the A.M. Of the number a_1,a_2 ,a_3 …., a_n has the value A where : (a) A lt -1/2 (b) A lt -1 (c) A ge -1/2 (d) A=-2