Home
Class 12
CHEMISTRY
The values of ^^(m)^(oo) for KCl and KNO...

The values of `^^_(m)^(oo)` for KCl and `KNO_(3)` are 149.86 and `154.96Omega^(-1)cm^(2)"mol"^(-1)`. Also `lambda_(Cl)^(oo)` is 71.44 `ohm^(-1)cm^(2) "mol"^(-1)` . The value of `lambda_(NO_(3)^(-))^(oo)` is

A

76.54 `ohm^(-1) cm^(2)"mol"^(-1)`

B

`133-08 ohm^(-1)cm^(2)"mol"^(-1)`

C

37.7 `ohm^(-1)cm^(2)"mol"^(-1)`

D

unpredictable.

Text Solution

AI Generated Solution

The correct Answer is:
To find the limiting molar conductivity of the nitrate ion \((\lambda_{NO_3^-}^{\infty})\), we can use the relationship between the molar conductivities of the salts and their constituent ions. The molar conductivity of a salt at infinite dilution is the sum of the molar conductivities of its cation and anion. ### Step-by-Step Solution: 1. **Write the equation for KCl:** \[ \lambda_{KCl}^{\infty} = \lambda_{K^+}^{\infty} + \lambda_{Cl^-}^{\infty} \] Given: \[ \lambda_{KCl}^{\infty} = 149.86 \, \Omega^{-1} \, cm^2 \, mol^{-1} \] We need to find \(\lambda_{K^+}^{\infty}\) and \(\lambda_{Cl^-}^{\infty}\). 2. **Write the equation for KNO3:** \[ \lambda_{KNO_3}^{\infty} = \lambda_{K^+}^{\infty} + \lambda_{NO_3^-}^{\infty} \] Given: \[ \lambda_{KNO_3}^{\infty} = 154.96 \, \Omega^{-1} \, cm^2 \, mol^{-1} \] 3. **Substitute the known values:** We know \(\lambda_{Cl^-}^{\infty} = 71.44 \, \Omega^{-1} \, cm^2 \, mol^{-1}\). From the KCl equation: \[ 149.86 = \lambda_{K^+}^{\infty} + 71.44 \] 4. **Solve for \(\lambda_{K^+}^{\infty}\):** \[ \lambda_{K^+}^{\infty} = 149.86 - 71.44 = 78.42 \, \Omega^{-1} \, cm^2 \, mol^{-1} \] 5. **Substitute \(\lambda_{K^+}^{\infty}\) into the KNO3 equation:** \[ 154.96 = 78.42 + \lambda_{NO_3^-}^{\infty} \] 6. **Solve for \(\lambda_{NO_3^-}^{\infty}\):** \[ \lambda_{NO_3^-}^{\infty} = 154.96 - 78.42 = 76.54 \, \Omega^{-1} \, cm^2 \, mol^{-1} \] ### Final Answer: \[ \lambda_{NO_3^-}^{\infty} = 76.54 \, \Omega^{-1} \, cm^2 \, mol^{-1} \]

To find the limiting molar conductivity of the nitrate ion \((\lambda_{NO_3^-}^{\infty})\), we can use the relationship between the molar conductivities of the salts and their constituent ions. The molar conductivity of a salt at infinite dilution is the sum of the molar conductivities of its cation and anion. ### Step-by-Step Solution: 1. **Write the equation for KCl:** \[ \lambda_{KCl}^{\infty} = \lambda_{K^+}^{\infty} + \lambda_{Cl^-}^{\infty} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The specific conductivity of a saturated solution of AgCl is 3.40xx10^(-6) ohm^(-1) cm^(-1) at 25^(@)C . If lambda_(Ag^(+)=62.3 ohm^(-1) cm^(2) "mol"^(-1) and lambda_(Cl^(-))=67.7 ohm^(-1) cm^(2) "mol"^(-1) , the solubility of AgC at 25^(@)C is:

The values of wedge_(m)^(oo) for NH_(4)Cl,NaOH, and NaCl are, respectively, 149.74,248.1 ,and 126.4 ohm^(-1)cm^(2)eq^(-1) . The value of wedge_(eq)^(oo)NH_(4)OH is

The values of wedge_(m)^(oo) for NH_(4)Cl,NaOH, and NaCl are, respectively, 149.74,248.1 ,and 126.4 ohm^(-1)cm^(2)eq^(-1) . The value of wedge_(eq)^(oo)NH_(4)OH is

The value of mu^(prop) for NH_(4)Cl, NaOH and NaCl are 129.8, 248.1 and 126.4 ohm^(-1) cm^(2) mol^(-1) respectively. Calculate mu^(prop) for NH_(3)OH solution.

wedge^(@)._(m) for CaCl_(2) and MgSO_(4) from the given data. lambda_(Ca^(2+))^(@)=119.0S cm^(2)mol^(-1) ltbr. lambda_(Cl^(c-))^(@)=76.3S cm^(2)mol^(-1) lambda_(Mg^(2+))^(@)=106.0S cm^(2)mol^(-1) lambda_(SO_(4)^(2-))^(@)=160.0 cm^(2)mol^(-1)

The conductivity of a saturated solution of a sparingly soluble salt MX_2 is found to be 4 xx 10^(-5) Omega^(-1) cm^(-1)." If "lambda_(m)^(oo) ( M^(2+))=50 Omega^(-1) cm^(2) mol^(-1) and lambda^(oo) (X^(-))= 50 Omega^(-1) cm^(2) mol^(-1) , the solubility product of the salt is about

At 298 K the molar conductivities at infinite dilution (^^_(m)^(@)) of NH_(4)Cl, KOH and KCl are 152.8, 272.6 and "149.8 S cm"^(2)"mol"^(-1) respectively. The ^^_(m)^(@) of NH_(4)OH in "S cm"^(2)"mol"^(-1) and % dissociation of 0.01 M NH_(4)OH with ^^_(m)="25.1 S cm"^(2)"mol"^(-1) at the same temperature are

From the following molar conductivities at infinite dilution : wedge_(m)^(@) for Ba(OH)_(2)=457.6Omega^(1)cm^(2)mol^(-1) wedge_(m)^(@) for BaCl_(2)=240.6Omega^(-1) cm^(2)mol^(-1) wedge_(m)^(@) for NH_(4)Cl=129.8 Omega^(-1) cm^(2) mol^(-1) Calculate wedge_(m)^(@) for NH_(4)OH .

The molar conductance of NaCl varies with the concentration as shown in the following table and all values follows the equation lambda_m^( C)=lambda_m^(oo)-bsqrtC where lambda_(m)^( C) =molar specific conductance lambda_(m)^(oo) =molar specific conductance at infinite dilution C=molar concentration {:("Molar Concentration of NaCl","Molar Conductance" "In" "ohm"^(-1)cm^(2)"mole"^(-1)),(4xx10^(-4),107),(9xx10^(-4),97),(16xx10^(-4),87):} When a certain conductivity cell (C) was filled with 25xx10^(-4) (M) NaCl solution.The resistance of the cell was found to be 1000 ohm.At Infinite dilution, conductance of Cl^(-) and SO_4^(-2) are 80 ohm^(-1) cm^(2) "mole"^(-1) and 160 ohm^(-1) cm^2 "mole"^(-1) respectively. If the cell ( C) is filled with 5xx10^(-3)(N)Na_(2)SO_(4) the obserbed resistance was 400 ohm.What is the molar conductance of Na_(2)SO_(4) .

Calculate the value of equivalent conductivity of MgCl_(2) at infinite dilution if lambda^(oo)(Mg^(2+))= 106.12 "ohm"^(-1)cm^(-2)"mol"^(-1), lambda^(oo)(Cl^(-))=76.34"ohm"^(-1)cm^(2)"mol"^(-1) .