Home
Class 12
MATHS
If y=sin(sinx) then prove that y2+(tanx)...

If `y=sin(sinx)` then prove that `y_2+(tanx)y_1+ycos^2x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(sinx) then show that y''+(tanx)y'+ycos^(2)x=0.

If y=acos(sinx)+bsin(sinx) then prove that y''+(tanx)y'+ycos^(2)x=0 .

If y=sin(sinx) then prove that (d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2x=0

If y=sin(msin^-1x) , prove that (1-x^2)y_2-xy_1+m^2y=0

If y=tanx , prove that y_2=2y y_1 .

If y=sin(logx), prove that , x^2y_2+xy_1+y=0 .

If y=secx+tanx then prove that 2(dy/dx)=(1+y^2)

If y = sin^-1x , prove that (1-x^2)y_2 - x y_1= 0

If y=sin (sinx) prove that (d^(2)y)/(dx^(2)) + "tan x" (dy)/(dx) + y cos^(2) x =0 .

If y = sin (m sin^(-1) x), prove that (1 - x^2)y_2 -xy_1 + m^2 y = 0