Home
Class 14
MATHS
If x=2+ sqrt5 then the value of x^3+x^-3...

If `x=2+ sqrt5` then the value of `x^3+x^-3` is:
यदि `x=2+sqrt 5` है तो `x^3+x^-3` का मान है :

A

`40 sqrt5`

B

`34 sqrt5`

C

`46 sqrt5`

D

`36 sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^3 + x^{-3} \) given that \( x = 2 + \sqrt{5} \), we can follow these steps: ### Step 1: Find \( x^{-1} \) We start by calculating \( x^{-1} \): \[ x^{-1} = \frac{1}{x} = \frac{1}{2 + \sqrt{5}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate \( 2 - \sqrt{5} \): \[ x^{-1} = \frac{2 - \sqrt{5}}{(2 + \sqrt{5})(2 - \sqrt{5})} \] Calculating the denominator: \[ (2 + \sqrt{5})(2 - \sqrt{5}) = 2^2 - (\sqrt{5})^2 = 4 - 5 = -1 \] Thus, \[ x^{-1} = -(2 - \sqrt{5}) = \sqrt{5} - 2 \] ### Step 2: Calculate \( x + x^{-1} \) Now we can find \( x + x^{-1} \): \[ x + x^{-1} = (2 + \sqrt{5}) + (\sqrt{5} - 2) = 2 + \sqrt{5} + \sqrt{5} - 2 = 2\sqrt{5} \] ### Step 3: Use the formula for \( x^3 + x^{-3} \) We use the identity: \[ x^3 + x^{-3} = (x + x^{-1})^3 - 3(x + x^{-1}) \] Substituting \( k = x + x^{-1} = 2\sqrt{5} \): \[ x^3 + x^{-3} = (2\sqrt{5})^3 - 3(2\sqrt{5}) \] Calculating \( (2\sqrt{5})^3 \): \[ (2\sqrt{5})^3 = 8 \cdot 5\sqrt{5} = 40\sqrt{5} \] Now substituting back: \[ x^3 + x^{-3} = 40\sqrt{5} - 6\sqrt{5} = 34\sqrt{5} \] ### Final Answer Thus, the value of \( x^3 + x^{-3} \) is: \[ \boxed{34\sqrt{5}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2+sqrt5 then the valule of x^3-x^-3 is: यदि x=2+sqrt5 है, तो x^3-x^-3 का मान ज्ञात करें |

If x=2-sqrt3 then the value of x^3-x^-3 is: यदि x=2-sqrt3 है, तो x^3-x^-3 का मान क्या होगा ?

If x=2+sqrt3 then the valule of x^3-x^-3 is: यदि x=2+sqrt3 है, तो x^3-x^-3 का मान ज्ञात करें |

If x= sqrt3-sqrt2 , then the value of x^3-x^-3 is: यदि x= sqrt3-sqrt2 है, तो x^3-x^-3 का मान क्या होगा ?

If x+x^-1=2 , then the value of x^3+x^-3 is: यदि x+x^-1=2 है, तो x^3+x^-3 का मान ज्ञात करें |

If x=2+sqrt3 then find the valule of x^4-8x^3+16x^2 is: यदि x=2+sqrt3 है, तो x^4-8x^3+16x^2 का मान ज्ञात कीजिए ।

If x=3+2 sqrt2 , then the value of x^2+1/x^2 is : यदि x=3+2 sqrt2 , और x^2+1/x^2 का मान ज्ञात करें :

If x - y = 4 and xy = 45, then the value of x^3-y^3 is : यदि x - y = 4 तथा xy = 45 है, तो x^3-y^3 का मान होगा :

If x^4-83x^2+1=0 , then the value of x^3- x^-3 can be : यदि x^4-83x^2+1=0 है, तो x^3- x^-3 का एक मान हो सकता है :

If 2x+2/x=1 , then the value of x^3+1/x^3 is यदि 2x+2/x=1 हो, तो x^3+1/x^3 का मान होगा?