Home
Class 14
MATHS
If a^3-b^3=899 and a -b = 31, then (a-b)...

If `a^3-b^3=899` and a -b = 31, then `(a-b)^2+ 3ab` is equal to:
यदि `a^3+b^3=899`और a -b = 31 है तो `(a-b)^2+ 3ab` का मान है:

A

35

B

31

C

16

D

29

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^3-b^3=899 and a -b = 29, then (a-b)^2+ 3ab is equal to:

If a^3-b^3=899 and a-b=31, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b=31, तो (a-b)^2 +3ab का मान क्या होगा ?

If a^3-b^3=899 and a-b=29, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b= 29, तो (a-b)^2 +3ab का मान ज्ञात करें |

If a^3+b^3=416 and a+b=16, then (a-b)^2 +ab is equal to: यदि a^3+b^3=416 तथा a+b=16 है, तो (a-b)^2 +ab का मान ज्ञात करें |

If a^3-b^3=208 and a-b=4, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 4, तो (a+b)^2 -ab का मान किसके बराबर है?

If a^3+b^3=5824 and a+b=28, then (a-b)^2 +ab is equal to: यदि a^3+b^3=5824 तथा a+b=28 है, तो (a-b)^2 +ab किसके बराबर है?

If a^3 +b^3 =110 and a+b=5, then (a+b)^2 -3ab is equal to: यदि a^3 +b^3 =110 और a+b=5 है, तो (a+b)^2 -3ab बराबर हैः

If a^3-b^3=208 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या होगा ?

If a^3+b^3=1344 and a+b=28, then (a+b)^2-3ab is equal to: यदि a^3+b^3=1344 और a+b=28 है तो (a+b)^2-3ab बराबर है: