Home
Class 14
MATHS
If x-1/x=7, then x^3-1/x^3 is equal to :...

If `x-1/x=7`, then `x^3-1/x^3` is equal to :

A

480

B

364

C

376

D

500

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x - \frac{1}{x} = 7 \) and find \( x^3 - \frac{1}{x^3} \), we can use a known algebraic identity. ### Step-by-Step Solution: 1. **Identify the given equation:** \[ x - \frac{1}{x} = 7 \] This is our starting point. **Hint:** Recognize that we need to relate this expression to \( x^3 - \frac{1}{x^3} \). 2. **Use the identity for cubes:** We know that: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right)^3 + 3 \left( x - \frac{1}{x} \right) \] Let \( k = x - \frac{1}{x} \). Thus, we can rewrite the expression as: \[ x^3 - \frac{1}{x^3} = k^3 + 3k \] **Hint:** Substitute \( k \) with the value from the given equation. 3. **Substitute the value of \( k \):** Since \( k = 7 \): \[ x^3 - \frac{1}{x^3} = 7^3 + 3 \cdot 7 \] **Hint:** Calculate \( 7^3 \) and \( 3 \cdot 7 \) separately. 4. **Calculate \( 7^3 \):** \[ 7^3 = 343 \] **Hint:** Remember that \( 7 \times 7 = 49 \) and \( 49 \times 7 = 343 \). 5. **Calculate \( 3 \cdot 7 \):** \[ 3 \cdot 7 = 21 \] **Hint:** This is straightforward multiplication. 6. **Add the results:** Now, combine the two results: \[ x^3 - \frac{1}{x^3} = 343 + 21 = 364 \] **Hint:** Ensure you add the numbers correctly. 7. **Final answer:** Therefore, the value of \( x^3 - \frac{1}{x^3} \) is: \[ \boxed{364} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

x-1/x= 7 , then x^3-1/x^3 is equal to : x-1/x= 7 है, तो x^3-1/x^3 का मान क्या होगा ?

If x+1/x= 3 , then x^3+1/x^3 is equal to : यदि x+1/x= 3 है, तो x^3+1/x^3 का मान क्या होगा ?

If (x+1/x)=2 then (x^3+1/x^3) is equal to:

If (x+1/x)=3 then x^2+1/x^2 is equal to

If x+1/(x)=5 , then x^(3)+1/(x^(3)) is equal to

If (x - 1/x) = 5 , then x^3 - 1/(x^3) equals :

If (x+1/x) =5,then x^3+1/x^3 equals :