Home
Class 14
MATHS
The side BC of a right-angled triangle A...

The side BC of a right-angled triangle ABC `(angle ABC = 90^@)` is divided into four equal parts at P, Q and R respectively. If `AP^2+AQ^2+AR^2=3c^2+7na^2`, then n is equal to:
एक समकोण त्रिभुज ABC `(angle ABC = 90^@)` की भुजा BC क्रमशः P, Q और R पर चार समान भागों में विभाजित है। यदि `AP^2+AQ^2+AR^2=3b^2+17na^2`, तो n किसके समान होगा?

A

`-1/8`

B

`3/4`

C

`1/8`

D

`-3/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if angle ABC=60^(@) , then ((AB-BC+CA)/(r ))^(2)=

ABC is a right triangle, right angled at C and AB = sqrt2 BC. Then, find angle ABC.

If triangle ABC is a right angled triangle with angle ABC = 90^@ , and AC = 10 cm and BC = 8 cm, then the length of AB is: यदि triangle ABC एक समकोण त्रिभुज है, angle ABC = 90^@ ,AC =10, BC =8 cm फिर AB की लंबाई है:

ABC is a right angled triangle , right angled at angleB . If side AB is divided into three equal parts by points D and E such that D is nearest to A , then (AC^(2)-EC^(2))/(DC^(2)-BC^(2)) is equal to :

In the given figure ABC is a right angled triangle with angleB=90^(@) . D is the mid -point of BC . Show that AC^(2) = AD^(2) +3CD^(2) .

In triangle ABC , angle C=90^@ , Points P and Q are on the sides AC and BC, respectively, such that AP :PC =BQ: QC=1:2 Then (AQ^2+BP^2)/(AB^2) is equal to: triangle ABC में angle C=90^@ , बिंदु P और Q क्रमशः AC और BC पर बिंदु इस प्रकार है की AP :PC =BQ: QC=1:2 तो (AQ^2+BP^2)/(AB^2) = ?

ABC is a right angled triangle with angleA=90^(@) .Then the value of cos^(2)A+cos^(2)B+cos^(2)C is :

A circle is inscribed in triangle ABC , touching AB, BC and AC at points P, Q and R respectively. If AB-BC = 4cm, AB-AC = 2cm and the perimeter of triangle ABC = 32cm , then PB+AR is equal to : / एक वृत्त त्रिभुज ABC के भीतर स्थित है जो AB, BC और AC को क्रमशः बिंदु P, Q और R पर स्पर्श करता है | यदि AB-BC =4 सेमी, AB-AC =2 सेमी और त्रिभुज ABC का परिमाप = 32 सेमी है, तो PB+AR का मान ज्ञात करें

ABC is a triangle, where BC = 2AB , angle B = 30^@ and angle A = 90^@ . The magnitude of the side AC is